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Abstract

In stochastic acoustic emission, both theory and experiments suggest that
the power of the acoustic emission signal is proportional to the source en-
ergy . Hence, inference about the power is equivalent to inference about the
source energy except for a constant multiple. In this regard, the connection
between peaks exceeding a fixed level and the power in random acoustic emis-
sion waves is explored when the source energy is an impulse of short duration.
Under certain conditions, the peak distribution is sensitive to power changes,
determines it and is determined by it. The maximum likelihood estimator
of the power from a random sample of peaks—the peak estimator-is more ef-
ficient than the maximum likelihood estimator-average sum of squares-from
a random sample of the same size of signal values. When evaluated from
nonrandom samples, indications are that the peak estimator may still have
a relatively small mean square error. A real data example indicates that the
left-truncated Rayleigh probability distribution may serve as an adequate
model for high peaks.

Abbreviated Title: “Acoustic Emission”

Key words and phrases: Energy, peak distribution, Upcrossings, Maxi-
mum likelihood, Gaussian process, spectrum.
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1 Introduction

In the phenomenon of acoustic emission, a burst of elastic waves is radiated
into a body from a source undergoing a rapid change in stress. The acoustic
emission problem consists of locating the source and characterizing it. One
of the most fundamental parameters for source characterization is the power
emitted, a quantity proportional to the product of the source volume and ve-
locity. Experimentally it has been found that the detectability of such sources
is given by the mechanical power density at the sensor, i.e. the elastic power
of the source divided by the volume of the medium. Thus acoustic emission
sources are undetectable if they are too small, move too slowly, or are diluted




in too large a body. As in electromagnetic theory, the dilution process oc-
curs as the source elastic power flows in the direction of its acoustic Poynting
vector toward neighboring regions of lower power density. This occurs along
with repeated wave reflections from the outer boundaries in the process of
reverberation. During this period, the waves tend to become randomized and
acoustic emission can be treated as a stochastic process. In this paper we
examine source characterization for such a process, beginning with a physical
model of such a vibratory system adopted from seismology. We also examine
the accuracy of statistical tools for source energy characterization.

Some important contributions have been previously made to this problem.
Although Lyon (1964) in his theory of statistical energy analysis adopted sta-
tistical methods to the problem of energy transfer between components of a
vibrating system, some of his techniques may be applicable to wave motion
within a single body. For example it has been suggested that during surface
mode conversion, energy is exchanged between the different mode types ac-
cording to statistical energy analysis. Weaver (1988) examined diffuse wave
fields. These are fields of approximately constant energy which exist for
certain ranges of signal duration, specimen geometry and frequency. Exper-
imentally, others (Clough(1987, 1992), Muravin et al. (1991)) have found
that even if frequencies outside of the diffuse field range are included in the
measurement (so that the total acoustic energy is measured), the energy in
the sensor signal is proportional to the source energy. This being so, any es-
timate of the power from the sensor voltage is also an estimate of the source
energy up to a constant multiple. If the proportionality constant is known by
calibration, this linearity permits direct measurements of acoustic emission
source energy, an example being the energy released by an advancing crack.

One of the principal features examined in this study is the relationship
for such systems between power measured directly from the signal versus
that obtained from the distribution of its larger peaks (truncated signal).
The relationship between the power and peak magnitude and its probability
distribution truncated to the left-conditional on peak magnitude greater than
some threshold—is the main topic of the present paper. To gain insight as
well as some generality, the underlying process is assumed to be a monotone
transformation of a Gaussian stationary process. The Gaussian case is then
a special case only.

Specifically, in this paper it is shown that:




1) The peak distribution, conditional on peak size greater than a fixed
positive threshold L, depends on the power. Changes in the conditional
peak distribution correspond to changes in power.

2) Under certain conditions, the maximum likelihood estimator of the power
from a random sample Xj, ..., X,, of peak heights greater than a rela-
tively large L > 0,

?:1 Xt2 - an

2n
is more efficient than the more direct estimator obtained from the sum
of squares of a random sample Zi, ..., Z, of signal values,

n 2
o 1=1 Zi

2 _ Lui=1 %

n

o? =

3) When o2 and o2 are computed from a time series (i.e. not a random
sample), computer simulations indicate that there are levels L for which

o2 tends to have a smaller mean square error (MSE) than o2.

4) The conditional peak distribution of any process obtained via a mono-
tone transformation of a stationary Gaussian process, constitutes a one
parameter exponential family which generalizes the Rayleigh distribu-
tion.

5) Power is a feature useful in detecting changes in the source or in the
medium.
2 Preliminaries

The existence of a basic linear relationship between source energy and average
power in the sensor signal was discussed above. This is what triggered the
present investigation.

2.1 An Energy Model

Experimental results show that when an energy impulse of short duration 7,
say, operates on a metal plate, the expected energy density £(¢) in the plate
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rises sharply throughout the period (0, 7], and then dissipates gradually for
t > 7. The latter period is referred to as ringdown or reverberation. A basic
physical model which describes this behavior runs as follows (e.g. see Wood
(1966), pp. 536-8). For simplicity we assume that the energy impulse is of
constant intensity P, in (0,7]. Let m > 0, be an absorption constant which
depends on the geometry and material of the specimen. Then, as in Clough
(1987), for 0 < ¢t < 7 and with £(0) = 0, the time derivative is

E'(t) = Psmé&(t)
so that the expected energy density increases as
(1) Et) = %(1 —exp(—mt)), 0<t<T
Since the source ceases operating for ¢ > 7 we have
E'(t) = —mé&(t)

and because now £(7) = P,(1 — exp(—m7))/m, we obtain for the ringdown
period the solution

(2) Et) = %’-(1 —exp(—m7))exp(—m(t—17)), t>T7

Now fixing arbitrary time points ¢,,t2 > 7, we observe that the power over
[t1,22] is given by

¢, i t /: E(t)dt = {‘T%nl_"%(exp(—mh) - exp(—mtg))} P,

where C(m, 7) is a constant depending only on m and 7. It follows that
the source energy is proportional to the power over [t1,1;] for any t1 < t,.
Moreover, we can choose a sufficiently small interval [t1,%3] for which the
mechanical vibration is approximately stationary.

Note that we have not yet touched on the observed electrical signal. This
is done next.



2.2 A Statistical Vibration Model

The mechanical vibration at a location on the plate is closely related to the
vibration at other locations. In other words, a time series representing the
vibration at a certain location as a function of time depends on similar series
observed at other locations. If we assume that the different time series-their
number can be very large~are related to each other linearly, their mutual
interdependence may be approximated by a first order linear system of dif-
ferential equations. Thus, from a purely mathematical point of view, an
idealized model which suits our purpose has the form

3) B ay(®) +be(t)

with the initial condition y(0—) = 0. Here the displacement y(¢) is an &k x 1
column vector and A is a real square matrix of degree k x k. Bolt and
Brillinger (1979) and Brillinger (1987) note that ( 3) serves as an adequate
model for a great variety of vibratory motions.

The general solution of ( 3) is (Boyce and DiPrima (1986), Ch. 7, Cod-
dington and Levinson (1955), p. 78),

¢
4) y(t)=eA0+b [ eAl-9§(s)ds = eAb, >0

0_
where

k
_I+ZA’°t

Assume the matrix A has n dzstmct complex eigenvalues ;. Then the
corresponding eigenvectors (column) x; are complex and are linearly inde-
pendent. If we define the matrix

T = (X1,X2, ...y Xp)
then it is nonsingular. Now,’

AT = A(x3,X3,...,Xn) = (AXy, AXg, ..., AXp) = (MiXa, AaX2, .ny AnXy,)
= (xl,x;>,...,xn)diag()\l,/\2,...,)\n) =TD
so that A is diagonalizable,

T AT =D




or
A =TDT!

A

Substituting this in e™! we obtain

00 tk
A - Dirp—
€ ¢ = T{I + kE—l DkH}T 1 = Te tT 1

But

eP? = diag(e?, e, ..., ent)

and our solution ( 4) becomes

(5) y(t) = eAth = Tdiag(e)‘”, et eA"t)T—lb _ Zaje’\’txj
—

where ¢; is the jth component of the vector T~'b.
Now write
/\_,‘ = —0;+ wj, Xj;=a;+ ibj

where the ringdown effect suggests that o; > 0. Then

Ajtyr . o g~ %it g , . o . e~ %t h. . . g )
eV'x; = e"%"{a; cosw;t — b;sinw;t} + ie”?7*{b; cosw;t + a; sinw;t}

Multiplying this by (complex) ¢, it follows that each component of y(t), say
y(t), has a real solution of the form

(6) y(t) = 3 pie™""" cos(wjt + ;)

where —0; = §R/\j, Wy = S‘Aj.
The solution ( 6) indicates that the time series of mechanical vibration
at a point resulting from acoustic emission may be modeled for a finite K as

K
(™) y(t) = 3 pie™" cos(uwst + ;) + e(t)

1=1

where {€(t)} is noise (see Brillinger (1987)). Evidently ( 7) is conducive to
explaining the ringdown effect. When the amplitudes and phases are uncor-
related, the signal to noise ratio is relatively high, and a dominant frequency




exists ( see Figures 3 and 4), the expected energy in ( 7) follows approxi-
mately the pattern of the energy model ( 2). Estimation of the parameters
in ( 7) is discussed in Bolt and Brillinger (1979).

A transducer which transforms the mechanical vibration into the observed
electrical signal, acts as a linear filter on {y(¢)}. Carrying our ideas a bit
further, if the o; in ( 7) are sufficiently small, then the observed electrical
signal over a short interval, denoted by {Z(t)}, may be taken as a mixed
spectrum stationary process with mean 0 and variance o2 of the form (see

also Rice (1944,1945))

K
(8) Z(t) = Z_; Aj cos(wit + ¢;) + C(t)

with the damping factors removed. Thus, by the mean value theorem and
in light of the preceding subsection, the variance o%-that is, the power of
{Z(t)}-is proportional to P,. The experimental results in Clough (1987,1992)
support this conclusion.

2.2.1 Experimental Verification

To see whether ( 8) is a reasonable model for acoustic emission, we have
generated acoustic emission signals in the laboratory and computed their
FFT’s and autocorrelations. The data and the method of generation are
described next.

Acoustic emission signals were produced by releasing a 3.175 mm diameter
steel ball bearing from a fixed height of 40.5 cm above a plate of 2519-T87
hardened aluminum alloy. The plate had dimensions of 2.22 x 30.48 x 91.44
cm, supported at each corner by spheres. For some of the experiments a block
of 2024-T351 hardened aluminum alloy with dimensions 11.43 x 8.25 x 8.25
cm was placed on the plate center , with its large face down. It was coupled
to the plate with ultrasonic gel.

The locations of the impact point of the ball and the transducer were
along the centerline of the plate, 15 cm from each end. The acoustic emission
transducer was a piezoelectric type, coupled by an ultrasonic gel to the plate
and loaded with a 0.6 N steel weight to maintain reproducibility. The cali-
bration supplied by the manufacturer showed a dominant resonant response
for the transducer at 140 kHz. The transducer was coupled by a coaxial ca-
ble directly into the high-impedance input of a 12 bit digital recorder with a
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preset threshold voltage for triggering the recording. Each recording of 4096
points was made with a 200 ns sampling time interval, and the recorder per-
mitted recording points before triggering occurred. The voltages recorded
typically had a maximum range of £+ 2 volts, corresponding to an integer
range of £2048.

Figures 1 and 2 show segments of typical electrical signals obtained by
dropping the small ball bearing on the metal plate and also on the same
plate plus a metal block shortly before a pronounced ringdown takes place.
The qualitative appearance of the records make the stationary assumption
over a short interval more credible. The corresponding averaged (over several
realizations) FFT’s in Figures 3 and 4 show that the data contain strong
sinusoidal components in close agreement with the model ( 8). Figures 5
and 6 show the corresponding estimated autocorrelation functions which do
not seem to decay—consistent with the presence of line spectra. This means
that the statistical dependence between well separated observations does not
vanish. The estimation of power under this condition can be quite tricky
(e.g. see Yaglom (1987), pp. 226-7, Koopmans (1974) p. 60).

The relationship between the source and measured acoustic emission en-
ergies produced by the steel ball bearing dropped from various increasing
heights onto the aluminum alloy plate is shown in Figure 7. With a sample
correlation coefficient of .974, the observed relationship is linear to a large
degree, in line with our energy model which predicts a highly linear rela-
tionship. A least squares fit of the model Y = ¢X?® to the data gives the
estimates & = 0.8979 and b = 1.27165. The slight curvature is associated
with an energy dissipation mechanism in the plate at the impact point, since
the measured rebound height is much less than that predicted by the Hertzian
elastic theory of impact. This theory has been verified experimentally by Ra-
man (1920) as well as by others. Two such mechanisms, which would also
produce the observed nonlinear response, are plastic deformation in the plate
or fracture of the aluminum oxide at the plate surface.

3 Power Estimation From Peak Distribution

The relevance of the probability distribution of peak magnitude (measured
from level 0) in reliability studies of mechanical systems has been known for a
long time (e.g. see Lin (1967) Ch. 9, Yang (1986) Ch. 8). Regarding acoustic



emission, Ono (1976) studied the peak distribution of continuous and burst-
type acoustic emission signals. An argument is made there that the Rayleigh
distribution serves as an adequate model for the peak magnitude observed
in continuous-type acoustic emission regardless of bandwidth. The work in
these references is based to a large degree on the work of Rice (1944, 1945)
and the Gaussian assumption. Builo and Tripalin (1982) have demonstrated
experimentally that the exponential distribution is an adequate probability
distribution model for the intervals between high peaks of acoustic emission
observed in low-carbon steel.

What is of interest to us is to further explore the connection between
power and peak distribution conditional on peaks higher than a fixed pos-
itive threshold. From the preceding discussion, this enables statistical in-
ference about the relative (i.e. up to a constant) source energy impulse. In
what follows, the observed electrical signal is assumed to be a coordinatewise
monotone transformation of a Gaussian process.

3.1 A Generalization of the Rayleigh Distribution

We shall derive the conditional peak distribution in monotone transforma-
tions of Gaussian processes to find the sensitivity of the distribution to
changes in power. Observe that a monotone transformation of a Gaussian
process is not necessarily Gaussian, a fact which makes our results somewhat
more general. In what follows we always assume that the relevant spectral
moments exist.

Let {Z(t)}, —o0 < t < 00, E[Z(t)] = 0, Var[Z(t)] = 02, be a stationary
Gaussian process with autocorrelation p,(t), assumed twice differentiable at
t = 0. The process in ( 8) fulfills this assumption when the amplitudes are
independent (positive) Rayleigh random variables, the phases are indepen-
dent random variables uniformly distributed in [0, 27] independently of the
amplitudes, and the noise is a zero mean continuous spectrum stationary
Gaussian process independent of the amplitudes and the phases. Consider
the memoryless transformation of Z(t),

where ¢(z) is strictly monotone increasing and continuously differentiable.



Observe that o? is the power of {Z(t)}, while that of {Y(¢)} can be
approximated roughly from a Taylor’s series expansion to one term,

Var[Y ()] = (¢'(0))%0”

A much more refined approximation obtained at the price of higher deriva-
tives is obtained from Houdré and Kagan (1992). Let X ~ AN(0,0?), and
¢(z) be a complex-valued 2n times differentiable function such that

Ep®(X)P <00,  k=0,1,--,2n, n21

Then the Houdré-Kagan inequality states that

> @ B POOP < Varlp(X)] < 3 () B0

By some integration, the joint probability density of (Y (¢),Y'(%)), g(u,v),
is given by (Orsingher (1979)),

(9) g(u’ v) _ exXp {%f [((p‘l(u))z + (-—p’z'(_o))[;j'z(gp—l(u))]?]}
202 [—p(0) [ (o= (w))]?

u > p(—00), —00 < v < co. Following Rice (1944, 1945), the expected rate-
per unit time—of upcrossings of level u for {Y'(¢)}, denoted by N,(u), is then
the integral (Orsingher (1979))

(10) Ny(w) = [~ gl 0)do = o=/ ~pl0) exp {5517 ()}

where u > ¢(—00). Related formulas both in discrete and continuous time
are discussed in Barnett and Kedem (1991), and for a general discussion see
Kedem (1994), Ch. 4.

By a peak we shall mean a local positive maximum observed in {Y'(¢)}.
Note that, in a given time interval, the number of peaks located above a
sufficiently high threshold level L(> 0) is equal to the number of upcrossings
of L under the condition that there are no troughs above L. This simple fact
enables us to derive the probability distribution of large peaks from ( 10).

Denote by the random variable X the magnitude of a peak observed
in {Y(¢)}. From now on we assume that I is a sufficiently large positive

10



constant so that the probability of a trough above L is negligible. Then from
(10)

Ny(z) — Ny(z +dz) —N,(z)dz
Ny(L) N, (L)
from which we obtain the conditional density of X given that X > L as

(1) p(e0) = 52D e [ (o @)~ (e L)L) 2> L
’ o ' (¢~1(z)) 207 ’

We can see that ( 11) defines a one parameter exponential family in o for

any given monotone ¢(z) and fixed L > 0, the sufficient statistic being

(¢™1(X))2. For p(z) = z and L = 0, p(z,0) reduces to the well known

Rayleigh probability density function (pdf),

T -z
(12) p(z,0) = FeXP{Eﬁ} , x>0

Evidently, ( 11) provides a generalization of the Rayleigh distribution.

To illustrate how changes in the parameter o change the general pdf
p(z,0) in ( 11), we have plotted p(z,o) in Figures 8 to 13 using various
monotone transformations and different levels L. The transformations are
o(z) = z, 23, exp(z),1/(1 +exp(—=z)),arctan(z). We can see from the figures
that the conditional peak distribution is fairly sensitive to changes in o—a
fact which might suggest o or o® as a classification feature in characteriz-
ing acoustic emission types. Some evidence supporting this is derived from
the acoustic emission data (ball dropping) described earlier. Thus from 9
independent realizations of “plate” only and then from 10 independent real-
izations of “plate+block” we obtain the sample variances (normalized) as de-
picted in Table 1. The acoustic emission variance (power) for “plate+block”
tends to be appreciably lower. Crude 95% confidence intervals for “plate”
and “plate+block” power are (0.608,0.913) and (0.317,0.523), respectively.
The intervals do not intersect.

It is useful to note that the mean and variance of the sufficient statistic
(p™}(X))? are readily available once p(z,o) is reparametrized using =
—1/202. Then we obtain the one parameter exponential family in natural

form (Bickel and Doksum (1977), pp. 70-71),

Pe<X<z+de|X>L)=

o) — oo d (0122 ot lon(—2m) — m(o=L( IV 4 ol P @)
p(z,0) p{"("’ ()" +log(~2m) = n(¢™ (L)) +1 g[SO’(cp“‘(w))}

11



With
do(n) = log(—2n) — n(p~'(L))?

we have

(13) E,[(¢71(X))?] = —dy(n) = 207 + (¢7(L))”
and

(14) Var (¢~ (X))?] = —di(n) = 40

Since inference in exponential families is based on the sufficient statistics,
the moment expressions ( 13) and ( 14) are very helpful.

12




Table 1. Estimated power/10° for acoustic emission records obtained from
“plate” and “plate+block”.

Plate Plate+B
0.71528  0.45827
0.73640 0.66554
0.40252 0.75503
1.10723  0.28555
0.94713 0.37602
0.68071  0.39467
0.76387  0.29357
1.01470 0.24337
0.47773 0.37462

0.35065
Mean 0.76062 0.41973
SD 0.23366 0.16623

3.2 Estimation of Power From Peaks

By our construction, the estimation of the power in {Y(¢)} is equivalent
to the estimation of 02 when ¢(z) is known-an assumption we have made
implicitly all along. Thus, the estimation can be carried out in several ways
of which we shall single out estimation based on actual values and estimation
based on peaks larger than L(> 0). It is interesting to compare the estimates
constructed in these two ways. As we show below, there can be an advantage
in precision, and possibly in speed, in estimating power from peak heights
rather than from sequential voltages.

As noted above, acoustic emission data may contain discrete spectral com-
ponents so that the statistical dependence in the data never dies out when
observations are separated in time. In the Gaussian case we have the further
complication that the sample variance is altogether inconsistent in the pres-
ence of line spectra. Thus the power estimation problem, which ostensibly
appears to be rather simple, requires some caution. For this reason, we shall
first assume that one has at hand random samples of independent and iden-
tically distributed random observations from the process values and from its
peaks. In source characterization and reliability studies, the scientist may

13




stimulate a structure to generate many independent acoustic emission records
by impact or by using a laser source at a very low cost. Hence, the assumption
that random samples—extracted from acoustic emission records—are available
has a practical base. The random sample approach enables maximum likeli-
hood considerations which in many cases result in efficient estimators. This
also may suggest a general form-at times quite unexpected—for the estimator

regardless of statistical independence.

So, for a relatively large L(> 0), let X;, X, ..., X,, be a random sample
of peaks greater than L from {Y'(¢)}. Then from ( 11) the sufficient statistic

for o is
n

T =3 (¢ (X))’

and from ( 13),( 14), -
Eo[T] = 2no? + n(p~'(L))?

and, regardless of ¢(z),
Var,[T] = 4no?

The maximum likelihood estimator (MLE) of o2 is obtained from the equa-

tion (Bickel and Doksum (1977), p. 102)

n

2no? + n(p™ (L)) = 3 (¢} (X:))?

i=1
which gives
(15) 0:\2 — Z?=1(¢—1(Xi))2 — n(‘ia_l('[/))2
2n
It is easily seen that o2 is unbiased and
. 4
(16) Var,[0?] = %

Moreover,

Vi(a? — o) 5 N(0,0)

Suppose on the other hand we have a random sample of values Y3, Y5, ..

from {Y'(t)}. Then the maximum likelihood estimator of o2 becomes

(17) o2 = Lzl (¥0)?

n

14

oY




which is again unbiased, but

- 4
(18) Var,[0?] = 2%

which is twice as large as the MLE from ( 16). We therefore have

Theorem 3.1 The MLE o° from a random sample of size n of peaks exceed-
ing a positive threshold L is twice as efficient as the MLE 02 from a random
sample of size n of actual process values.

It follows that we must have twice as many actual independent process values
than independent peaks to achieve the same precision.

We need to clarify the last result. Recall that we are dealing with an ideal
situation where potential difficulties stemming from discrete spectral compo-
nents are bypassed by sampling from independent realizations. Then under
some conditions the power can be estimated efliciently from large peaks.
However, the presence of line spectra is not necessarily a hindrance and we
can still use the common sense estimator which is the average of the sum of
squares from a single realization—assuming zero mean. For example, when
in ( 8) the amplitudes are fixed (not random), the phases are uniformly and
independently distributed over the spectral support (0,27] (assuming the
unit of time to be the sampling interval), and the noise component is ergodic
and independent of the random phases, then the common sense estimator
is strongly consistent. For discussions of this point see Houdré and Kedem
(1994), Li and Kedem (1993), Kedem and Slud (1994), and Kedem (1994),
Ch. 6. A clarification of this technical point is given in the enclosed ap-
pendix. Whether in this case-the fixed amplitudes case-it is more efficient
to estimate the power from peaks is not at all clear (although our simulation
study below clarifies this point to some degree), but one thing is certain,
there are many more sample values than qualified large peaks exceeding L
in a single realization, a fact which may make the use of peaks somewhat
dubious. Still, the import of our finding is that it points to the connection
between power and peak values, and to the advantage of peaks under some
conditions. Furthermore, as we shall very soon see, the estimator ( 15) can
be used advantageously in general regardless of statistical independence.
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4 The Case of Truncated Rayleigh

We now specialize the preceding general discussion to the case of most prac-
tical interest when no transformation takes place at all-that is ¢(z) = z—and
the power o? is estimated from large peaks in the Gaussian process {Z(t)}.
That is, we assume that the observed electrical signal is stationary and Gaus-
sian with mean zero. Then ( 10) becomes

19) Ny(u) = ;},;JT(O)p{%—}

When the measurement level u is sufficiently high ( 19) is also the expected
rate of peaks above level u (see Rice (1945), p. 75) and the conditional
density ( 11) of peak magnitude X given that X > L for L > 0 becomes

z -1
(20) p(z,0) = 3 EXP {g(:ﬂ - L2)} ,& > L

which is a (left-) truncated Rayleigh pdf. For L = 0 no truncation occurs and
( 20) reduces to a bona fide Rayleigh probability density. The MLE from a
random sample X7, ..., X, of peaks greater than L now has the form

r  rey XE— nL?
(21) o? = o
This is the peak estimator from which an approx1mate 95% confidence interval
for the power is given by

0-2
22 o?=0g2+1. 96-—-——

When instead of peaks we have a random sample of process values Zy, ..., Z,,

the MLE is

~ n 72
23 2 — 1=1 <4
(23) R

In this case the approximate 95% confidence interval is longer,

(24) o’ =0o2 % 1.96ﬁa"2
n

Since o? is proportional to P,, from a single calibration which determines
the proportionality constant we can get—using either ( 22) or ( 24)-a confi-
dence interval for P;.
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4.1 Plate Data Example: Large Peaks Are Rayleigh

To see whether ( 20) is a reasonable model for acoustic emission signals, the
truncated density was fitted to the data from our plate experiment (plate
only) described in Section 2.2. One may argue that high peaks are roughly
nearly independent and we have used all the peaks greater than L = 400
from 9 independent electrical signals. The results of a chi-square goodness of
fit test are given in Table 2. The results are insignificant at level .05, that is,
the hypothesis that the peak data follow a truncated Rayleigh with L = 400
is accepted at the .05 level.

On the other hand, lowering L may give significance. Thus, with L = 300
and an additional category, 300 < X < 400, we have a large observed x?
value as indicated in Table 3.

Table 2. Observed versus expected frequencies under the truncated Rayleigh
hypothesis with L = 400. The hypothesis is accepted at level .05.

Category Observed Expected

400 < X < 500 40 28.93
500 < X < 600 23 24.87
600 < X < 700 12 19.26
700 < X < 800 13 13.58
X > 800 18 19.37
o =1.41 x 10°
¥ =172
d.f=3
X%os =18
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Table 3. Observed versus expected frequencies under the truncated Rayleigh
hypothesis with L = 300. The hypothesis is rejected at level .05.

Category Observed Expected

300 < X < 400 83 53.44

400 < X < 500 40 47.14

500 < X < 600 23 35.97

600 < X < 700 12 24.16

700 < X < 800 13 14.41
X > 800 18 13.88

0% =1.05 x 10°

x? = 29.6

d.f=4

X5 = 948

We conclude that the truncated Rayleigh model ( 20) with a “large” L
is a reasonable model for our acoustic emission signals. Note that assuming
a truncated Rayleigh model for the peaks is weaker than the full-fledged
Gaussian assumption.

As for the peak estimator ( 21), a sample of 30 peak values above L = 750
from the plate data gives 62 = 1.01790 x 10°, which is in agreement with
some of the higher values in the “Plate” column in Table 1. The peaks larger
than L = 650 from a single ball dropping are 992, 656, 768, 704,672,672, 800
and 6% = 0.77536 x 10%, a figure close to the average of the sample variances
in the “Plate” column in Table 1. However, the samples here are not exactly
random, and their size is too small for a meaningful comparison with the
estimates in Table 1 obtained from thousands of data points. More definite
conclusions may be reached from simulations under controlled conditions as
in the next subsection.

4.2 Comparison Between o2 and o2
4.2.1 Random Samples

Consider the stationary Gaussian autoregressive process of order two, AR(2),

Zi=$1Z1+ $2Zs—2 + €
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where t = +1,+2,..., and the ¢ are independent A (0,1). We have simu-
lated time series of length 10,000 from the process for various choices of ¢1, ¢2.
From each stretch of 100 points—there are 100 stretches—we selected one pro-
cess value and one peak greater than a fixed L. The samples obtained in
this way are close to being random samples since the autocorrelation decays
exponentially fast and the process is Gaussian.

For (1, #2) = (0.7,—0.5), the true variance of the process is 6 = 1.70455.
Table 4 shows the results of 15 independent time series of length 10,000 each
from the process, each giving rise to values of o2, with L = 2, and o2. The
average, sample variance, and mean square error (MSE) from 15 values show
that the peak estimator o? outperforms the average sum of squares o2 Tt is
interesting to note that the MSE for o2 is about one half of that of 02, in
agreement with the theory.

Table 4. Values of (52,52) corresponding to (¢1,¢2) = (0.7,—-0.5), L = 2,
n = 100. The true power is o? = 1.7045.
o2 o
1.60930 1.74627
1.32313 1.69699
1.48443 1.57510
2.00502 1.84070
1.50617 1.61886
1.74592 1.47999
1.34961 1.56067
1.56412 1.73637
1.53982 1.60481
1.56688 1.47263
1.47726 1.77821
1.43776 1.62170
1.73009 1.72299
1.78605 1.98918
1.57093 1.61198
Average 1.57977 1.67043
Variance 0.03147 0.01893
MSE 0.04704 0.02010

The same experiment was repeated with 15 independent time series of
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length 20,000 each from the process with (¢1, #2) = (0.3,—0.3). Here each
stretch of 200 points from a given series gave us one process value and one
peak above L = 2, so that n = 100. Again we can see from Table 5 a marked
decrease in MSE in favor of the peak estimator.

Table 5. Values of (52,0:2) corresponding to (¢y,¢2) = (0.3,—-0.3), L = 2,
n = 100. The true power is 02 = 1.16071.

o2 pe
0.94680 1.20669
0.82511 1.09422
1.49400 1.15819
1.04945 1.11955
1.10327 1.12631
1.08123 1.14332
1.21339 0.91157
0.82539 1.15223
1.01798 1.03584
1.32814 1.07454
0.91231 1.16006
1.19762 1.05037
1.04856 1.18575
1.01346 1.01346
1.40548 1.26507
Average 1.09748 1.11314
Variance 0.03945 0.00759
MSE 0.04345 0.00986

The preceding example was repeated for (¢1, ¢2) = (0.5, —0.5) but with
a relatively large L = 3. Here not every stretch of 200 produced a peak
larger than L = 3, so that we ended up evaluating o2 from less than n = 100
values. However, the average sum of squares o2 was still evaluated from
n = 100 values. The results of 20 runs are given in Table 6. The table also
gives the number of qualified peaks used in the evaluation of 2. Once again,
the MSE of o2 is smaller than the MSE of o2, despite of the fact that the

peak estimator was obtained from smaller samples
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Table 6. Values of (52,52) corresponding to (¢1,¢2) = (0.5,—0.5), L = 3.
For 02, n = 100. The true power is 0% = 1.5.

o? o2 No. Peaks
1.77575 1.55380 81
1.64088 1.57567 7
1.81782 1.46814 81

1.81136 1.56932 70
1.71470 1.41060 72
1.26101 1.43511 71

1.35314 1.31085 65
1.57529 1.47282 80
1.75162 1.35096 74
1.86053 1.40739 7
1.33553 1.56781 66
1.48608 1.32215 78

1.19041 1.25009 70
1.41774 1.43028 7
1.31050 1.55496 74
1.77570 1.50617 68
1.20113 1.57117 72
1.68260 1.56711 74
1.46441 1.44517 76

1.82231 1.61418 79
Average 1.56243 1.46919
Variance 0.05312 0.01090
MSE 0.05702 0.01185

The last three examples, as well as many more not reported here, support
the theoretical development in that the peak estimator o2 has a smaller MSE
than the average sum of squares estimator 02 when the observations, process
values and peak values, constitute random samples. The tendency to have
a smaller MSE also has been observed more generally in time series records
when the sample consists of the entire time series. This is illustrated next.
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4.2.2 Non-Random Samples: Discrete Spectra

In the preceding subsection we dealt with random samples from a continuous
spectrum AR(2) process. In this subsection we continue to compare o2 and
o? given sinusoidal data plus noise of the form ( 8) which is more akin to
real acoustic emission.

Our sinusoidal model consists of 4 Gaussian sinusoids plus independent
Gaussian noise of the form ( 8) where the signal to noise ratio (SNR) is
10dB. We have generated 100 independent time series from the process each
of length 1000, and evaluated o2 and o2 from each series. Given a time series,
o? is evaluated from the entire record (n = 1000), while the peak estimator
ov:Z is obtained from all the peaks in the series greater than L. This gives 100
0?’s and 100 02’s from which we obtained an average and a sample MSE. The
entire procedure was repeated 12 times. In each case we have also computed
the average number of peaks used in the evaluation of the 02’s. Observe that
on the average, the number of qualified peaks exceeding L is much smaller
than 1000.

As can be seen from Tables 7 and 8, in this particular simulation the
peak estimator tends to underestimate the true power, but still, as in random
samples, it consistently gives smaller MSE. The theory of statistics judges
the overall performance of estimators by the smallness of their MSE (e.g. see
Bickel and Doksum (1977), p. 117).
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Table 7. Each entry gives the average of 0? and o2 and the corresponding
MSE from 100 independent sinusoidal time series. L = 0.9, (wy,ws,ws,wy) =
(0.8,0.9,1.0,1.1), SNR = 10dB. The true power is o° = 4.3969.

No. P o?
Ave MSE Ave MSE  Ave. Peaks
1| 4.42298 4.16290 | 4.01190 3.72059 148.010
2 14.34284 4.53365 | 3.91621 3.98727 148.200
3 14.41098 3.68609 | 3.96479 3.37266 148.170
4 |4.50014 3.55210 | 4.01090 3.04897 151.350
514.35831 4.37212 | 3.91347 3.85721 148.030
6 | 4.49152 4.39982 | 3.99070 3.88936 151.040
7 | 4.33635 3.63446 | 3.86039 3.36573 150.130
8 | 4.69967 5.38226 | 4.20014 4.22441 150.170
914.44479 3.75730 | 4.04271 3.36434 147.660
10 | 4.46937 4.54787 | 4.00060 4.00205 149.130
11 | 4.39735 4.84906 | 3.97789 4.49687 149.030
12 | 4.53469 3.96519 | 4.10351 3.54251 149.160

Table 8. Each entry gives the average of o2 and o2 and the corresponding
MSE from 100 independent sinusoidal time series. L = 1.3, (w1, ws,ws,ws) =
(0.37,0.93,1.77,2.53), SNR = 10dB. The true power is o = 4.3969.

No. o? o?

Ave MSE Ave MSE  Ave. Peaks
4.17966 3.90781 | 3.26522 3.75073 192.050
4.53908 4.34813 | 3.55319 3.38525 195.600
4.61030 3.70160 | 3.63241 3.01491 197.230
4.06742 4.15672 | 3.22769 4.04330 184.870
4.50532 2.99449 | 3.53389 2.69128 198.240
4.57901 4.35255 | 3.63311 3.53046 191.790
4.51478 4.38266 | 3.57757 3.65392 189.690
4.50253 4.17192 | 3.59954 3.43382 187.180
9 | 4.59567 4.81051 | 3.65653 3.52461 187.800
10 | 4.91599 6.33309 | 3.86769 4.13517 194.010
11 | 4.57212 4.69809 | 3.62599 4.02183 191.800
12 | 4.62566 5.45805 | 3.65549 4.09232 189.130

O ~J O O W DN
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5 Summary

As discussed in the beginning of the paper, the estimation of power from
noisy acoustic emission time series is important for source characterization.
In this regard, we have illustrated—-by deriving under assumptions a class of
conditional peak distributions-the fact that relatively large peaks observed
in stationary time series contain information about the power. This led to
the construction of the peak estimator ( 21).

The power can be estimated straightforwardly by the average sum of
squares—the sample variance when the mean is zero-or, alternatively, from
the peak estimator ( 21) which uses peaks exceeding a relatively large positive
threshold L. Under certain conditions, the peak estimator tends to have a
smaller MSE than the average sum of squares. Simulations show that the
peak estimator may underestimate the true power when the peaks do not
form a random sample and/or when the peaks in the sample are not large
enough. On the other hand, overestimation may occur too when the sample
contains extreme peaks and L is not large enough.

Common sense suggests that both estimators be evaluated and used in
some combination. Since under some conditions spelled out in the Appendix
the average sum of squares is erratic, the peak estimator is a quantity to be
reckoned with.

When troughs occur above level 0 with a high probability, the process is
not narrow band to a sufficient degree and L must be relatively large. On the
other hand, an excessively large L will clearly disqualify most peaks thus forc-
ing the evaluation of the peak estimator from unduly small samples. This
may result in underestimation—when the sample contains too many values
close to L-or in overestimation-when the sample contains too many extreme
peaks. The important question of an optimal threshold is open at present.

Acknowledgement. The authors are grateful to Profs. J. Dancis, T. Lee,
E. Slud and P. Wolfe for very useful comments and clarifying discussions.
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6 Appendix: Discrete Spectrum Considera-
tion

To clarify the power estimation problem in mixed and discrete spectrum
processes, we consider a purely discrete spectrum process. For this we follow
Houdré and Kedem (1994).

Let {X;},t =0,%1,+£2,- .-, be a weakly stationary discrete spectrum pro-
cess with mean E[X;] = m, autocovariance R(k) = E[(Xiyx — m)(X; — m)],
k=0,%1,%2,---, and spectral distribution F'(dw) supported at p+1 distinct
atoms in {wg, w1, ,wp} € (=7, 7], such that wy = 0. Then,

Xi—m= /ﬂ e ¢(dw)
where,
(dw) =Y &jbu,(dw),  F(dw) = Y E[¢;|*6, (dw)
j=0 j=0

and the
{({wih) =¢;
are orthogonal with mean zero. Clearly ¢ : B(—n, ] — L*(P) is o-additive.

As an estimator for R(k) we choose the (simplified) sample autocovari-
ance

~ Z(Xt+k —m)(X; —m)

The power is estimated from the average sum of squares
L3 X mp
N4 t=ml
If we define

£0(dw) = {Zlé {w;})I%e "“”} So(dw) + 3~ E({w; DE{wi D) ™16, o (dw)

J#l
Then
3 it oK)
(Xewr =m) (X —m) = [ eHe)(dw)
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and we can see that for each fixed k, the lag process (Xiyx — m)(X; — m)
admits a Fourier representation with respect to £®) : B(—2r,27] — L'(P),
and a dc component

EW{0}) =3 [6({w;})IPe™
Jj=0
Theorem 6.1 Let

p 3
(25) Xy=m+) e, t=0,+1,£2,--

where E[¢;] = 0, and for j # | E[¢;&] = 0, be a complex valued weakly sta-
tionary process with mean m, autocovariance R(-), and a spectrum supported
at p+ 1 distinct atoms {wo = 0,w1,+++,wp} € (=7, 7). Then as N — oo,

L ¢ 0 ¢(h)
(26) 7 D_(Xegr — m)(X; —m) m) ©5 eW({0}),  k=0,+1,%2,---

t=1

Furthermore,
(27) Z(Xm— J(Xe—m) “5"R(E), k=012,

if and only if

(28) €j = V E|§j|2ei¢1, .7 = 0717' Y 4

where the ¢; are random phases.

The requirement of constant amplitudes |¢;| means that if {X;} in ( 25) is
a real-valued Gaussian process, its sample autocovariance is not consistent.
For a proof of Theorem 6.1 and further extensions see Houdré and Kedem

(1994).
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Figure 1: An electrical signal generated by acoustic emission resulting from
ball dropping on a metal plate.
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Figure 2: An electrical signal generated by acoustic emission resulting from
ball dropping on a metal plate plus block.




AVERAGED FFT FROM THE "PLATE" REALIZATIONS
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Figure 3: A portion of average FFT from 9 independent “plate” realizations.
n = 4096, At = 200 x 10~°.
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Figure 4: A portion of average FFT from 10 independent “plate+block” re-
alizations. n = 4096, At = 200 x 10~°.



AVERAGE AUTOCORRELATION FOR “PLATE" REALIZATIONS
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Figure 5: Average autocorrelation from 9 independent “plate” realizations.
n = 4096, At = 200 x 1079,
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Figure 6: Average autocorrelation from 10 independent “plate+block” real-
izations. n = 4096, At = 200 x 107°.
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Figure 7: Relationship between source and acoustic emission energies for a
steel ball bearing dropped from various heights onto and aluminum alloy plate.
The sample correlation coefficient is 0.974.




P(x)
RAYLEIGH: f(x)=x, L=0, sigma=0.5,1,1.414,2

Figure 8: Rayleigh pdf: p(z,0) with ¢(z) =z,L =0, and o = .5,1,1.414, 2.

P(x) f(x)=x, L=1, sigma=0.5,1,1.414,2

Figure 9: Truncated Rayleigh: p(z,0) with o(z) = z,L = 1, and o =
5,1,1.414,2.
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Figure 10: p(z,0) with ¢(z) =23, L =1, and 0 = .5,1,1.414,2.
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f(x)=exp(x), L=1, sigma=0.5,1,1.414,2

Figure 11: p(z,0) with o(z) = exp(z), L = 1, and 0 = .5,1,1.414, 2.
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Figure 12: p(z,0) with o(z) = 1/(1 + exp(—2)),L = .5, and 0 =
2,.5,1,1.414,2.
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Figure 13: p(z,0) with ¢(z) = arctan(z), L =0, and o = .2,.25,.3,.35.




